Continuous R&D on Autopilot

The Platform forSelf-Improving Code

Pick a key metric to spin up hundreds of experiments that optimize your code overnight, surfacing top‑scoring versions you can ship. Trusted by frontier AI labs - wake up to winning results:

$ weco run
📊 Summary
Goal: Maximize QxK^T kernel throughput on H200
Logs: runs/3ce9ab3e-opt-gpu-matmul
Model: o4-mini
Tokens:91.2K74.8K = 166.0K   52%12/25 Steps
📝 Thinking...
We started from a plain Triton implementation of QxK^T (128x128 blocks).
The profiler showed the kernel was memory‑bound. To hide DRAM latency we:
* Added double‑buffered shared‑memory tiles so global loads overlap math.
* Switched to 32x128x32 tiling to cut register pressure.
* Hoisted the K‑pointer update outside the loop.
Each change was kept only if it delivered >5% speed‑up.
🔍 Exploring Solutions...
🌳 baseline  1.00×
└─● attempt
  ├─● attempt
  │ └─● attempt
  ├─● tile32  0.45×
  ├─● reg_prune  0.62×
  └─● attempt
    ├─● dbuf  0.87×
    └─● attempt
      ├─● attempt
      ├─● prefetch  1.10×
      ├─fusion  1.57× 🏆
      └─○ evaluating
💡 Current Solution (Step 12)
  1import triton, triton.language as tl
  2 
  3@triton.autotune(
  4  configs=[tl.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 64}, num_warps=4, num_stages=2)],
  5  key=["M", "N", "K_dim"],
  6)
  7@triton.jit
  8def qk_kernel_naive(Q_ptr, K_ptr, Out_ptr, M, N, K_dim):
  9    pid = tl.program_id(axis=0)
 10    m = pid // tl.cdiv(N, 128)
 11    n = pid % tl.cdiv(N, 128)
 12    offs_m = m*128 + tl.arange(0, 128)
 13    offs_n = n*128 + tl.arange(0, 128)
 14    offs_k = tl.arange(0, 64)
 15    acc = tl.zeros((128, 128), dtype=tl.float32)
 16    for k in range(0, K_dim, 64):
 17        q = tl.load(Q_ptr + (offs_m[:, None]*K_dim + (k+offs_k)[None, :]))
 18        kT = tl.load(K_ptr + (offs_n[:, None]*K_dim + (k+offs_k)[None, :]))
 19        acc += tl.dot(q, tl.trans(kT))
 20    tl.store(Out_ptr + offs_m[:, None]*N + offs_n[None, :], acc)
🏆 Best Solution (1.57×)
  1import triton, triton.language as tl
  2 
  3@triton.autotune(
  4  configs=[
  5    tl.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32}, num_warps=4, num_stages=4),
  6    tl.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32}, num_warps=4, num_stages=4),
  7  ],
  8  key=["M", "N", "K_dim"],
  9)
 10@triton.jit
 11def qk_kernel_opt(Q_ptr, K_ptr, Out_ptr, M, N, K_dim):
 12    pid = tl.program_id(axis=0)
 13    m = pid // tl.cdiv(N, 64)
 14    n = pid % tl.cdiv(N, 64)
 15    offs_m = m*128 + tl.arange(0, 128)
 16    offs_n = n*64 + tl.arange(0, 64)
 17    acc = tl.zeros((128, 64), dtype=tl.float32)
 18    Q_ptrs = Q_ptr + offs_m[:, None]*K_dim
 19    K_ptrs = K_ptr + offs_n[None, :]*K_dim
 20    for k in range(0, K_dim, 32):
 21        q = tl.load(Q_ptrs + k)
 22        kblk = tl.load(K_ptrs + k)
 23        acc += tl.dot(q, tl.trans(kblk))
 24    tl.store(Out_ptr + offs_m[:, None]*N + offs_n[None, :], acc)
🖥 Evaluation Output
>>> benchmarking   qk_kernel_naive   (step 14)
warm‑up................. ok
collecting 100 timing samples
  [25/100] median  77.4 µs   4.34 TFLOPs
  [50/100] median  75.9 µs   4.42 TFLOPs
  [75/100] median  75.6 µs   4.44 TFLOPs
  [100/100] median 75.3 µs   4.46 TFLOPs

device   : NVIDIA A100‑80GB
batch    : 4096     seq_len : 2048
GPU Kernel Optimization
Model Development
Prompt Engineering
OpenAI Logo
MITLogo
ETH Zurich Logo
United Nations Logo
Sakana Logo

Academia and Industry Recognition

Weco's innovative approach is featured in leading research papers and industry publications

Evaluation-Driven Optimization - AIDE, the Engine Inside Weco

Outperforming competitors with systematic iteration and optimization focused on measurable results

AgentValid Submission (%)Above Median (%)Gold (%)Any Medal (%)
AIDE82.829.49.416.9
MLAB44.31.90.80.8
OpenHands527.12.74.4

Evaluation‑Driven, Metric‑First Engineering

AIDE iterates until the metric says "better." In OpenAI's MLE‑Bench it secured 4× more medals than the next best autonomous agent across 75 Kaggle competitions - proof that an explicit evaluation loop beats one‑shot code generation.

With AIDE you systematically trade a bit of compute for outsized code quality, no manual hyper‑tuning required.

AIDE vs. human engineers on RE‑Bench

Beyond Human Baselines

In METR's 6‑hour RE‑Bench challenge, AIDE consistently out‑performed seasoned researchers, surfacing "surprising" solutions humans missed - validating our mission to automate experimentation itself.

Open, Evolving & Launching Soon

AIDE's core is open‑source - explore the repo or read the paper to dive deeper into our approach.

The Weco Platform is live. Install the CLI with pip install weco, run it against your evaluation script, and watch every experiment stream to the Dashboard in real time. Want a voice in new features? Join the waitlist and help shape what we build next.

Frequently Asked Questions